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a b s t r a c t

In this work we introduce a mixture of GPs to address the data association problem, i.e., to label a group

of observations according to the sources that generated them. Unlike several previously proposed GP

mixtures, the novel mixture has the distinct characteristic of using no gating function to determine the

association of samples and mixture components. Instead, all the GPs in the mixture are global and

samples are clustered following ‘‘trajectories’’ across input space. We use a non-standard variational

Bayesian algorithm to efficiently recover sample labels and learn the hyperparameters. We show how

multi-object tracking problems can be disambiguated and also explore the characteristics of the model

in traditional regression settings.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The data association problem arises in multi-target tracking
scenarios. Given a set of observations that represent the positions
of a number of moving sources, such as cars or airplanes, data
association consists of inferring which observations originate
from the same source [1,2]. Data association is found in tracking
problems for instance in computer vision [3], surveillance, sensor
networks [4] and radar tracking [5].

An example of data association with two sources is illustrated
in Fig. 1. For a human observer, little effort is required to
distinguish two noisy trajectories in this example, representing
the paths followed by two objects in time. In this specific case one
observation of each target is available at each time instant and the
measurement instants are equally spaced in time, though neither
of these properties are required in general.

Typical multi-target tracking algorithms operate online. They
include joint Kalman filters [6] and joint particle filters [7]. Given
the predicted positions of the targets and a number of candidate
observed positions, they usually make instant data association
decisions based on nearest-neighbor criteria or statistically more
sophisticated approaches such as the Joint Probabilistic Data-
Association Filter (JPDAF) [5,7] or the Multiple Hypothesis Tracker
(MHT) [6]. An important disadvantage of these classical techni-
ques is that they usually require to determine a large number of
parameters. This drawback motivated the development of several
ll rights reserved.

; fax: þ34 942201488.

(M. Lázaro-Gredilla),
conceptually simpler approaches based on motion geometry
heuristics [2,8,9]. However, these approaches are usually limited
to specific scenarios, and they show difficulties in the presence of
noise and when several trajectories cross each other.

Most data association techniques can be significantly
improved by postponing decisions until enough information is
available to exclude ambiguities [2], although this causes the
number of possible trajectories to grow exponentially. Some
attempts have been made to restrain this combinatorial explo-
sion, including the heuristic methods from [10,11].

In this paper we present an algorithm based on Gaussian
Processes that is able to consider all available data points in batch
form whilst avoiding the exponential growth in potential tracks.
As a result, it is capable to deal with difficult data association
problems in which trajectories come very close and even cross
each other. Furthermore, the algorithm does not require any
knowledge about the model underlying the data, and it does not
need time instants to be evenly spaced, nor to contain observa-
tions from all sources.

Gaussian Processes (GPs) [12] are a powerful tool for Bayesian
nonlinear regression. When combined in mixture models, GPs can
be applied to describe data when there are local non-stationa-
rities or discontinuities [13–16]. The components of the mixture
model are GPs and the prior probability of any given component
is typically provided by a gating function. The role of the gating
function is to dictate which GP is a priori most likely to be
responsible for the data in any given region of the input space, i.e.,
the gating network forces each component of the GP mixture to
be localized.

In this work we follow a different approach, inspired by the
data association problem. In particular, for any given location in
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Fig. 1. Example of a multi-target tracking scenario. Data association aims to identify what observations correspond to each source. (a) One-dimensional observations and

(b) solution obtained by the proposed method.
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input space there may be multiple targets, perhaps corresponding
to multiple objects in a tracking system. We are interested in
constructing a GP mixture model that can associate each of these
targets with separate components. When there is ambiguity, the
posterior distribution of targets will reflect this. We therefore
propose a simple mixture model in which each component is
global in its scope. The assignment of the data to each GP is
performed sample-wise, independently of input space localiza-
tion. In other words, no gating function is used. We call this model
the Overlapping Mixture of GPs (OMGP).

It has been brought to our attention that the proposed model
bears resemblance with the work of [17]. However, the focus of
application is clearly different. In [17], the objective is to cluster a
set of trajectories according to their similarity, whereas in this
work we tackle the task of clustering observations into trajec-
tories (a more demanding task, since only single observations, as
opposed to full trajectories, are available). Also, [17] uses a
standard variational Bayesian algorithm, whereas in this work
we take advantage of non-standard variational algorithms [18,19]
to derive a tighter bound.

The remainder of this paper is organized as follows: In Section
2 we provide a brief review of GPs in the regression setting.
Section 3 first introduces the OMGP model and then discusses
how to perform efficient learning, hyperparameter selection, and
predictions using this model. Experiments on several data sets are
provided in Section 4. We wrap up in Section 5 with a brief
discussion.
1 To make this assumption hold, the sample mean of the set fyðxnÞg
m
n ¼ 1 is

usually subtracted from data before proceeding further.
2 Of course, in a practical implementation, this inversion should never be

performed explicitly, but through the use of the Cholesky factorization and the

solution of the corresponding linear systems, see [12].
2. Brief review of Gaussian Processes

In recent years, Gaussian Processes (GPs) have attracted a lot
of attention due to their nice analytical properties and their state-
of-the-art performance in regression tasks (see [20]). In this
section we provide a brief summary of the main results for GP
regression, see [12] for further details.

Assume that a set of N multi-dimensional inputs and their
corresponding scalar outputs, D� fxn,yng

m
i ¼ 1, are available. The

regression task is, given a new input xn, to obtain the predictive
distribution for the corresponding observation yn based on D.

The GP regression model assumes that the observations can be
modeled as some noiseless latent function of the inputs plus
independent noise y¼ f ðxÞþe, and then sets a zero-mean1 GP
prior on the latent function f ðxÞ � GPð0,kðx,x0ÞÞ and a Gaussian
prior on e�N ð0, s2Þ on the noise, where kðx,x0Þ is a covariance
function and s2 is a hyperparameter that specifies the
noise power.

The covariance function kðx,x0Þ specifies the degree of coupling
between yðxÞ and yðx0Þ, and it encodes the properties of the GP
such as power level, smoothness, etc. One of the best-known
covariance functions is the anisotropic squared exponential. It has
the form of an unnormalized Gaussian, kðx,x0Þ ¼ s2

0 exp
ð�1

2x>K�1xÞ and depends on the signal power s2
0 and the

length-scales K, where K is a diagonal matrix containing one
length-scale per input dimension. Each length-scale controls how
fast the correlation between outputs decays as the separation
along the corresponding input dimension grows. We will collec-
tively refer to all kernel parameters as h.

The joint distribution of the available observations (collected
in y) and some unknown output yðxnÞ is a multivariate Gaussian
distribution, with parameters specified by the covariance func-
tion:

y

yn

" #
� N 0,

Kþs2IN kn

k>
n

knnþs2

" # !
, ð1Þ

where ½K�nn0 ¼ kðxn,xn0 Þ, ½kn�n ¼ kðxn,xnÞ and knn ¼ kðxn,xnÞ. IN is
used to denote the identity matrix of size N. The notation ½A�nn0

refers to entry at row n, column n0 of A. Likewise, ½a�n is used to
reference the n-th element of vector a.

From (1) and conditioning on the observed training outputs we
can obtain the predictive distribution

pGPðyn9xn,DÞ ¼N ðyn9mGPn,s2
GPnÞ,

mGPn ¼ k>
n
ðKþs2INÞ

�1y, s2
GPn ¼ s

2þknn�k>
n
ðKþs2INÞ

�1kn, ð2Þ

which is computable in OðN3
Þ time, due to the inversion2 of the

N�N matrix Kþs2IN .
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Hyperparameters fh,sg are typically selected by maximizing
the marginal likelihood (also called ‘‘evidence’’) of the observa-
tions, which is

log pðy9h,sÞ ¼ �1

2
y>ðKþs2INÞ

�1y�
1

2
9Kþs2IN9�

N

2
logð2pÞ: ð3Þ

If analytical derivatives of (3) are available, optimization can
be carried out using gradient methods, with each gradient
computation taking OðN3

Þ time. GP algorithms can typically
handle a few thousand data points on a desktop PC.

When dealing with multi-output functions, instead of a single
set of observations y, D sets are available, y1 . . . yD, each corre-
sponding to a different output dimension. In this case we can
assume independence across the outputs and perform the above
procedure independently for each dimension. This will provide
reasonable results for most problems, but if correlation between
different dimensions is expected, we can take advantage of this
knowledge and model them jointly using multi-task covariance
functions [21].
3. Overlapping Mixtures of Gaussian Processes (OMGP)

The Overlapping Mixtures of Gaussian Processes (OMGP)
model assumes that there exist M different latent functions
ff ðmÞðxÞgMm ¼ 1 (which we will call ‘‘trajectories’’), and that each
output is produced by evaluating one of these functions at the
corresponding input and by adding Gaussian noise to it. The
association between samples and latent functions is determined
by the N�M binary indicator matrix Z: Entry ½Z�nm being non-zero
specifies that n-th data point was generated using trajectory m.
Only one non-zero entry per row is allowed in Z.

To model multi-dimensional trajectories (i.e., when the mix-
ture model has multiple outputs), D latent functions per trajec-
tory can be used ff ðmÞd ðxÞg

M,D
m ¼ 1,d ¼ 1. Note that there is no need to

extend Z to specifically handle the multi-output case, since all the
outputs corresponding to a single input are the same data point
and must belong to the same trajectory.

For convenience we will collect all the outputs in a single
matrix Y¼ ½y1 . . . yD� and all the latent functions of trajectory m in
a single matrix FðmÞ ¼ ½fðmÞ1 . . . fðmÞD �. We will refer to all the latent
functions as fFðmÞg.

Given the above description, the likelihood of the OMGP model
is

pðY9fFðmÞg,ZÞ ¼
YN,M,D

n ¼ 1,m ¼ 1,d ¼ 1

N ð½Y�nd9½F
ðmÞ
�nd,s2Þ

½Z�nm : ð4Þ

Following the standard Bayesian framework, we place priors
on the unobserved latent variables

pðZÞ ¼
YN,M

n ¼ 1,m ¼ 1

½P�½Z�nm
nm , pðFðmÞ9XÞ ¼

YM,D

m ¼ 1,d ¼ 1

N ðfðmÞd 90,KðmÞÞ, ð5Þ

i.e., a multinomial distribution over the indicators (in whichPM
m ¼ 1½P�nm ¼ 1 8n) and independent GP priors over each latent

function.3 We allow different covariance matrices for each tra-
jectory. Though the multinomial distribution is specified here in
its more general form, additional constraints are usually imposed,
such as holding the prior probabilities constant for all data points.
For the sake of clarity, we will omit the conditioning on the
hyperparameters fh,P,s2g, which can be assumed to be known
for the moment.
3 If correlation between different trajectories is known to exist, trajectories

can be jointly modeled as a single GP, using a covariance function that accounts for

this dependence. This would increase the computational complexity of inference

for this model, but the following derivations can still be applied.
Unfortunately, the analytical computation of the posterior
distribution pðZ,fFðmÞg9X,YÞ is intractable, so we will resort to
approximate techniques.

3.1. Variational approximation

If the hyperparameters are known, it is possible to approxi-
mately compute the posterior using a variational approximation.
We can use Jensen’s inequality to construct a lower bound on the
marginal likelihood as follows:

log pðY9XÞ ¼ log

Z
pðY9fFðmÞg,ZÞpðZÞ

YM
m ¼ 1

pðFðmÞ9XÞdfFðmÞg dZ

Z

Z
qðfFðmÞg,ZÞlog

pðY9fFðmÞg,ZÞpðZÞ
QM

m ¼ 1 pðFðmÞ9XÞ

qðfFðmÞg,ZÞ
dfFðmÞg dZ

¼LVB: ð6Þ

Here LVB is a lower bound on log pðY9XÞ for any variational

distribution qðfFðmÞg,ZÞ and equality is attained if and only if
qðfFðmÞg,ZÞ ¼ pðZ,fFðmÞg9X,YÞ. Our objective is therefore to find a
variational distribution that maximizes LVB, and thus becomes an
approximation to the true posterior. We will restrict our search to
variational distributions that factorize as qðfFðmÞg,ZÞ ¼ qðfFðmÞgÞqðZÞ.

If we assume that qðfFðmÞgÞ is given (and therefore, also the
marginals qðfðmÞd Þ ¼N ðf

ðmÞ
d 9lðmÞd ,RðmÞÞ are available), it is possible to

analytically maximize LVB with respect to qðZÞ by setting its
derivative to zero and constraining it to be a probability density.
The optimal qðZÞ is then:

qðZÞ ¼
YN,M

n ¼ 1,m ¼ 1

½P̂�½Z�nm
nm with ½P̂�nmp½P�nm expðanmÞ ð7Þ

with anm ¼
XD

d ¼ 1

�
1

2s2
ðð½yd�n�½l

ðmÞ
d �nÞ

2
þ½RðmÞ�nnÞ�

1

2
logð2ps2Þ

� �
,

where we see that the (approximate) posterior distribution over
the indicators qðZÞ factorizes for each sample.

Analogously, assuming qðZÞ as known, it is possible to analy-
tically obtain the distribution over the latent functions that
maximize LVB. For the OMGP model, this distribution factorizes
both over trajectories and dimensions, and is given by

qðfðmÞd Þ ¼N ðf
ðmÞ
d 9lðmÞd ,RðmÞÞ ð8aÞ

with RðmÞ ¼ ðK�1ðmÞ
þBðmÞÞ�1 and lðmÞd ¼RðmÞBðmÞyðmÞd , ð8bÞ

where BðmÞ is a diagonal matrix with elements ½P̂�1m=s2 . . .

½P̂�Nm=s2.
It is now possible to initialize qðZÞ and qðfðmÞd Þ from their prior

distributions and iterate updates (7) and (8) to obtain increasingly
refined approximations to the posterior. Since both steps are
optimal with respect to the distribution that they compute, they
are guaranteed to increase LVB, and therefore the algorithm is
guaranteed to converge to a local maximum.

Monotonous convergence can be monitored by computing LVB

after each update. LVB can be expressed as

LVB ¼/log pðY9fFðmÞg,ZÞSqðfFðmÞg,ZÞ�KLðqðfFðmÞgÞJpðfFðmÞgÞÞ�KLðqðZÞJpðZÞÞ

where the first term is given by

/log pðY9fFðmÞg,ZÞSqðfFðmÞg,ZÞ ¼
XN,M

n,m

½P̂�nmanm,

and the two remaining terms are the Kullback–Leibler (KL)
divergences from the approximate posterior to the prior, which
are straightforward to compute.

Update (7) takes only OðNMÞ computation time, whereas (8)
takes OðMN3

Þ time, due to the M matrix inversions. The presented
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model therefore has the same limitations as conventional GPs
regarding the size of the data sets that it can be applied to.
However, when the posterior probability of some indicator ½P̂�nm

is close to zero, sample n no longer affects trajectory m and can be
dropped in its computation, thus reducing the cost. Furthermore,
it is possible to use sparse GPs4 to reduce this cost5 to OðMNÞ time
by making use of the matrix inversion lemma.

3.2. An improved variational bound for OMGP

So far we have assumed that all the hyperparameters of the
model are known. However, in practice, some procedure to select
them is needed. The most straightforward way of achieving this
would be to select them so as to maximize LVB, interleaving this
procedure with updates (7) and (8). However, when the quality of
this bound is sensitive to changes of the model hyperparameters,
this approach results in very slow convergence. A solution to this
problem is described in [18] where the advantages of maximizing
an alternative tighter bound on the likelihood are shown.

The improved bound proposed in [18] is still a lower bound on the
likelihood but it can be proved that it is also an upper bound on the
standard variational bound LVB. As shown in [18], if we subtract LVB

from the improved bound, the result takes on the form of a KL-
divergence. This fact can be used both to show that it upper-bounds
LVB (since KL-divergences are always positive) and to name the new
bound, which is referred to as the KL-corrected variational bound.

The KL-corrected bound for the OMGP model arises when the
term log

R
pðY9fFðmÞg,ZÞpðZÞ dZ from the true marginal likelihood (6)

is replaced with
R

qðZÞlogðpðY9fFðmÞg,ZÞpðZÞ=qðZÞÞ dZ, which accord-
ing to Jensen’s inequality, constitutes a lower bound for any distribu-
tion qðZÞ:

log pðY9XÞZ log

Z YM
m ¼ 1

pðFðmÞ9XÞe
R

qðZÞ logðpðY9fFðmÞg,ZÞpðZÞ=qðZÞÞ dZdfFðmÞg

¼LCorrVB ¼
XM,D

m ¼ 1,d ¼ 1

logN ðyðmÞd 90,KðmÞ þB�1ðmÞ
Þ

�KLðqðZÞJpðZÞÞþ
D

2

XN,M

n ¼ 1,m ¼ 1

log
ð2ps2Þ

1�½P̂ �nm

½P̂�nm

:

The KL-corrected lower bound LCorrVB can be computed analy-
tically and has the advantage with respect to LVB, of depending

only on qðZÞ (and not qðfFðmÞgÞ), since it is possible to integrateQM
m ¼ 1 pðFðmÞ9XÞ out analytically.

Bound LCorrVB can be alternatively obtained by following the
recent work in [19] and optimally removing qðfFðmÞgÞ from the
standard bound. In the context of that work, LCorrVB is referred to as
the ‘‘marginalized variational bound’’, and it is made clear that LCorrVB

corresponds simply to LVB when, for a given qðZÞ, the optimal choice
for qðfFðmÞgÞ is made. In other words, for the same set of hyperpara-
meters and the same qðZÞ, if one chooses qðfFðmÞgÞ according to (8),
both LVB and LCorrVB would provide the same result.

Thus, learning is performed simply by optimizing LCorrVB with
respect to qðZÞ and the hyperparameters, iterating the following two
steps:
�

app

con

app

OðM
E-Step: Updates (7) and (8) are alternated, which monotoni-
cally increase both LVB and LCorrVB, until convergence. Hyper-
parameters are kept fixed.
4 Such as the standard FITC approximation described in [22] or the variational

roach introduced in [23].
5 Obviously, the cost also depends on the quality of the approximation by a

stant factor. If the FITC approximation with r pseudo-inputs (or other rank-r

roximation) is used, the computational complexity could be expressed as

Nr2
Þ.
�
 M-Step: Gradient descent of LCorrVB with respect to all hyper-
parameters is performed. Distribution qðZÞ is kept fixed.

Note that it is in the M-step where LCorrVB becomes actually
useful, since this improved bound remains more stable across
different hyperparameter selections, due to it not depending on
qðfFðmÞgÞ, as demonstrated in [18].

Of course, any strategy that maximizes LCorrVB is valid, but we
have found the above EM procedure to work well in practice.

Computing LCorrVB according to the provided expression with-
out incurring in numerical errors can be challenging in practice,
since several inversions, which may be unstable, are needed. Also,
note that BðmÞ can take arbitrarily small values and thus direct
inversion may not be possible. An implementation-friendly
expression where explicit inverses are avoided is

LCorrVB ¼
XM

m ¼ 1

�
1

2

XD

d ¼ 1

JRðmÞ>\ðBðmÞ1=2yðmÞd ÞJ
2
�D

XN

n ¼ 1

log½RðmÞ�nn

 !

�KLðqðZÞJpðZÞÞ�
D

2

XN,M

n ¼ 1,m ¼ 1

½P̂�nmlogð2ps2Þ,

where

RðmÞ ¼ cholðIþBðmÞ1=2KðmÞBðmÞ1=2
Þ

and the backslash has the usual meaning of solution to a linear
system.6

3.3. Predictive distributions

The OMGP model can be used for a variety of tasks. In the data
association problem (i.e., clustering data into trajectories) the task
at hand is to cluster observations into trajectories, which can be
achieved by assigning each observation to the trajectory that
more likely generated it, i.e., to assign label mn ¼ arg maxm½P̂�nm

to the n-th observation, so no further computations are necessary.
For other tasks, however, it can be necessary to obtain predictive
distributions over the output space at new locations. Under the
variational approximation, this predictive distributions can be
computed analytically.

The predictive distribution in the output dimension d corre-
sponding to a new test input location xn can be expressed as

pðynd9xn,X,YÞ ¼
XM

m ¼ 1

½P�nm

Z
pðynd9f

ðmÞ
d ,xn,XÞ pðfðmÞd 9X,YÞ dfðmÞd

�
XM

m ¼ 1

½P�nm

Z
pðynd9f

ðmÞ
d ,xn,XÞ qðfðmÞd 9X,YÞ dfðmÞd

¼
XM

m ¼ 1

½P�nmN ðynd9m
ðmÞ
nd ,s2ðmÞ

nd Þ

with

mðmÞ
nd ¼ k>ðmÞ

n
ðKðmÞ þBðmÞ�1

Þ
�1 yd,

s2ðmÞ
nd ¼ s

2þknn�k>ðmÞ
n
ðKðmÞ þBðmÞ�1

Þ
�1kðmÞ

n
,

i.e., a Gaussian mixture under the approximate posterior. The
mixing factors ½P�nm are the prior probabilities of each compo-
nent, one of the given hyperparameters of the model, and
typically constant for all inputs.

Note the correspondence of these predictive equations with
the standard predictions for GP regression (2). The only difference
6 Expressions of the type C\c refer to the solution of the linear system Cx¼ c
and are a numerically stable operation requiring only OðN2

Þ time when C is

triangular, which is the case here.



M. Lázaro-Gredilla et al. / Pattern Recognition 45 (2012) 1386–13951390
is the noise component, which is scaled for each sample according
to ½P̂��1

nm. In particular, as the posterior probability of a sample
belonging to the current trajectory (sometimes known as
‘‘responsibility’’) decays, the amount of noise associated to that
sample is proportionally grown, thus reducing its effect on the
posterior process.

Due to the reasons mentioned in the previous subsection, the
predictive equations should not be implemented directly. Instead,
the following numerically-stable expressions should be used:

mðmÞ
nd ¼ k>ðmÞ

n
BðmÞ1=2

ðRðmÞ\ðRðmÞ>\ðBðmÞ1=2yðmÞd ÞÞÞ,

s2ðmÞ
nd ¼ s

2þknn�JRðmÞ>\ðBðmÞ1=2k>ðmÞ
n
ÞJ2:
3.4. Batch versus online operation

Though the description of OMGP is oriented toward batch data
association tasks, this model can also be successfully applied to
online tasks, by using a data set that grows over time. New
samples are included as they arrive and the learning process is re-
started, initializing it from the state that was obtained as a
solution for the previous problem. Depending on the constraints
of a given problem, many different optimizations can be made to
avoid an explosion in computational effort, such as using low-
rank updates.

Note, however, that since in this model all the elements in
each latent function form a fully connected graph, the Markovian
property does not hold and the computation time required for
each update is not constant. A possible workaround to achieve
constant-time updates is to use constat-size data sets, for instance
corresponding to a sliding window, and then perform low-rank
0
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Fig. 2. (a) Observations for two sources that move in opposite circles, (b) data associati

observations coming from source 1 (top) and 2 (bottom).
updates to include and remove samples. However, we will not
pursue that option in this work.
4. Experiments

In this section we investigate the behavior of OMGP both in
data association tasks and regression tasks showing the versatility
of this model. We use an implementation of OMGP in Matlab on a
3 GHz, dual-core desktop PC with 4 GB of memory, yielding
executions times of the order of seconds for each experiment.

4.1. Data association tasks

4.1.1. Toy data

We first apply OMGP to perform data association on a toy data set.
The sources perform circular motions, one clockwise and one
counterclockwise, as depicted in Fig. 2(a). The available observations
represent the measured positions of the sources (which include
Gaussian noise) at known time instants. However, it is not known
which observed position corresponds to which source. Since both
trajectories are circles with the same center and radius, the sources
cross each other twice per revolution, making the clustering problem
more difficult. However, as shown in Fig. 2(b), OMGP is capable of
successfully identifying the unknown trajectories. Fig. 2(c) illustrates
the uncertainty about the estimated labels. Specifically, it shows a
decrease in the posterior probability of the correct labels whenever
the two sources come close.

4.1.2. Missile-to-air multi-target tracking

Next, we consider a missile-to-air tracking scenario as
described in [7]. The motion dynamics of this scenario are defined
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Fig. 3. Missile-to-air data association problem with three sources. The starting point of each source is marked with a black dot. (a) Trajectories identified by SIR/MCJPDA,

(b) trajectories identified by OMGP, incremental online version and (c) trajectories identified by OMGP, batch solution.

Table 1
RMSE comparison on the missile-to-air data association problem.

Algorithm RMSE #1 RMSE #2 RMSE #3 nerr

SIR/MCJPDA 292.46 150.07 258.14 17

OMGP (online) 182.31 151.46 163.92 6

OMGP (batch) 133.30 80.23 118.94 1
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by the following state-space equations:

stþ1 ¼
I3 TI3

O3 I3

" #
stþ
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2 I3

TI3

" #
vt; rt ¼ hðstÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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t þY2
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arctan �Ztffiffiffiffiffiffiffiffiffiffiffiffi

X2
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t
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� �

2
6666664

3
7777775
þet :

In this model, the state vector st ¼ ½Xt ,Yt ,Zt ,Vx,t ,Vy,t ,Vz,t� contains the
source position and velocity components, rt contains the observed
measurements, T is the sampling interval, and I3 and O3 represent the
3�3 unity matrix and null matrix, respectively. The process noise vt

and measurement noise et are assumed Gaussian, vt AN ð0,Q Þ and
et AN ð0,RÞ. For more details refer to [7]. The problem posed in [7]
consists in tracking two sources and estimating their unknown state
vector, given their correct initial states s1

0 ¼ ½6500,�1000;2000,�
50;100,0� and s2

0 ¼ ½5050,�450;2000,100;50,0�. We consider a more
complex scenario by adding a third source, with initial state
s3

0 ¼ ½8000;500,2000,�100;0,0�, which passes close to one of the
other sources at a certain instant.

We apply the SIR/MCJPDA filter from [7] and OMGP to perform
data association on the observations. The SIR/MCJPDA filter
consists of a set of joint particle filters that perform tracking of
multiple sources, combined with a joint probability data associa-
tion (JPDA) technique which provides instantaneous data associa-
tion. The number of particles used in this experiment is 25,000. In
order to operate correctly, the SIR/MCJPDA filter requires com-
plete knowledge of the used state-space model and the initial
state vectors xi

0. Note that OMGP is completely blind in this
regard. The OMGP algorithm is operated first in its incremental
online setting. For illustration purposes, we also include results of
the batch version of the OMGP algorithm.

The trajectories obtained by each method can be found in
Fig. 3, along with the predicted measurements. Although the SIR/
MCJPDA filter initially performs correctly, it encounters difficul-
ties at the point where the sources come close. After this point it
shows erroneous assignments for at least one trajectory. Its
mistakes are mainly due to its state vector depending only on
one previous state, which proves insufficient if the sources are
close during multiple consecutive measurements. The online



M. Lázaro-Gredilla et al. / Pattern Recognition 45 (2012) 1386–13951392
version of OMGP does not show this problem. The smoothest
solution is obtained by batch OMGP, which performs a global
evaluation of the entire trajectories.
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To evaluate the performance of the algorithms, we measure
the RMSE of each trajectory. These values can be found in Table 1,
along with the number of observations that are assigned to the
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Fig. 6. Predictive means and variances for two different data sets. The shaded area denotes 72 standard deviations around the mean. Top row: noisy sinc with

outliers. (a) Standard GP and (b) OMGP with a noise-only component. (Only the predictive mean and variance of the signal component is depicted, which includes noise
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wrong trajectories, nerr, out of a total of 90 observations. As can be
observed, both versions of the OMGP algorithm obtain superior
results compared to SIR/MCJPA. Furthermore, while SIR/MCJPDA
requires complete knowledge of the state-space model and the
initial state vectors, OMGP does not require any knowledge of the
underlying model.
7 See [27] for a full description of the used test bed.
4.1.3. Interference alignment in OFDM wireless networks

Interestingly, the data association problem can be found in
contexts that go beyond standard multi-target tracking scenarios,
such as digital communications [24]. In the third experiment we
apply OMGP to a data association problem that occurs in wireless
communication networks.

Interference alignment (IA) is a concept that has recently
emerged as a solution to raise the capacity of wireless multiple-
input multiple-output (MIMO) networks [25]. The underlying
idea of IA along the spatial dimensions is that the interference
from other transmitters must be aligned at each receiver in a
subspace orthogonal to the signal space. In order to implement
interference alignment in scenarios with multiple subcarriers, a
digital filter must be applied at each transmit antenna. Here we
will consider a 3-user interference channel with two antennas per
node and OFDM modulation using Nc subcarriers [26], which
allows for two possible filter responses per subcarrier. Since only
smooth frequency responses can be implemented, the smoothest
solution of the 2Nc possible choices should be selected.

This combinatorial problem corresponds to a data association
problem in which only the smoothest curve is of interest. The data
used for this experiment consists of two simulated data sets and
one data set obtained with a MIMO test bed setup,7 each using 52
subcarriers. In Fig. 4 we illustrate the solutions obtained by OMGP
on these data sets. While the simulated data sets from
Fig. 4(b) and (c) represent reasonably simple data association
problems, the performance of OMGP on the real-world data set of
Fig. 4(d) shows that it is capable of correctly distinguishing the
smoothly-varying solution from the surrounding noisy data. As a
matter of fact, we have been able to successfully implement
OMGP in the IA setting for a parallel ongoing research project.
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4.2. Regression tasks

We now consider application of the model in more standard
regression tasks. In particular, we consider tasks where the target
density is multimodal, which is the case when the data comes
from multiple sources.

4.2.1. Multilevel regression

Consider the data set from Fig. 5(a), which corresponds to
observations from three independent functions. A normal GP
would fail to produce valid multimodal outputs and previously
proposed mixtures of GPs would restrict the component GPs to
local parts of the space. OMGP can properly label each observa-
tion according to the generating function and provide multimodal
predictive distributions, as depicted in Fig. 5(b).

Fig. 5 can also be interpreted as measurements of the position
of three particles moving along one dimension of which snap-
shots are taken at irregular time intervals (horizontal axis). Each
snapshot introduces noise in the position measurement and does
not necessarily capture the position of all the particles. In this
case OMGP could be used to predict the position of any particle at
any given point in time, as well as to properly label the samples in
each snapshot.

4.2.2. Robust regression

Since each GP in the mixture can use a different covariance
function, it is possible to use a GP to capture unrelated outliers
and another one to interpolate the main function. This is easily
achieved by a mixture of two GPs, one with the ARD-SE covar-
iance function and another with kðx,x0Þ ¼ b2dðx,x0Þ, i.e., white
noise. We consider the problem of regression in a noisy sinc in
which some outliers have been introduced in Fig. 6 (top row).
Observe how OMGP both identifies the outliers and ignores them,
resulting in much better predictive means and variances.

4.2.3. Heteroscedastic behavior

Finally, Fig. 6 (bottom row) shows the results of running a GP
and OMGP on the motorcycle data set from [28]. Two components
have been identified, which might or might not correspond to two
actual physical mechanisms alternatively producing observations.
The predictive variances show improved behavior with respect to
the standard GP.
5. Discussion and future work

In this work we have introduced a novel GP mixture model
inspired by multi-target tracking problems. The new model has
the important difference with respect to previous approaches of
using global mixture components and assigning samples to
components by relying on their value in output space, instead
of input space (as it is done when gating functions are used).

A simple and efficient algorithm for inference relying on the
variational Bayesian framework has been provided. The model can be
applied in practice due to the use of an improved KL-corrected
variational bound to learn the hyperparameters. Direct optimization
of this bound both to obtain an approximate posterior and to learn
the hyperparameters will be considered in a further work.

The OMGP model offers promising results when tracking moving
targets, as has been illustrated experimentally in Section 4 and
compares favorably with established methods in the field. Also,
through imaginative application of the model using different covar-
iance functions we were able to adapt the approach to robust
regression and heteroscedastic noise.

Naive implementation of GPs limits their applicability to only
a few thousand data samples. However, recent advances in sparse
approximations (e.g. [22,23]) greatly should enable our approach
to be applied to much larger data sets.
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