Adding a row and column to the kernel matrix

In the $ n$-th iteration, a new pattern $ ({\mathbf x}_n,y_n)$ is first added to the memory, which corresponds to adding one row and one column to the kernel matrix $ {\mathbf K}_{n-1}$. We call this operation ``upsizing'' the matrix, and the result is denoted as $ \breve{{\mathbf K}}_{n}$. Given the inverse matrix $ {\mathbf K}_{n-1}^{-1}$, the inverse of the upsized matrix, $ \breve{{\mathbf K}}_{n}^{-1}$, can be obtained by calculating

$\displaystyle \breve{{\mathbf K}}_{n} = \begin{bmatrix}{\mathbf K}_{n-1} & \tex...
... g{\mathbf e}{\mathbf e}^T & -g{\mathbf e} -g{\mathbf e}^T & g \end{bmatrix},$ (5)

in which $ {\mathbf e}= {\mathbf K}_{n-1}^{-1}{\mathbf b}$, $ g = (d - \textbf{b}^T{\mathbf e})^{-1}$, and $ {\mathbf b}$ and $ d$ contain kernels between $ {\mathbf x}_n$ and the other points in memory (see [12]).



Pdf version (236 KB)
Steven Van Vaerenbergh
Last modified: 2010-08-07