- 1
-
Bernhard Schölkopf and Alexander J. Smola,
Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond,
The MIT Press, December 2001.
- 2
-
Jyrki Kivinen, Alexander J. Smola, and Robert C. Williamson,
``Online learning with kernels,''
IEEE Transactions on Signal Processing, vol. 52, no. 8, pp.
2165-2176, Aug. 2004.
- 3
-
Simon Haykin,
Adaptive Filter Theory (4th Edition),
Prentice Hall, September 2001.
- 4
-
Yaakov Engel, Shie Mannor, and Ron Meir,
``The kernel recursive least squares algorithm,''
IEEE Transactions on Signal Processing, , no. 8, pp.
2275-2285, Aug. 2004.
- 5
-
Weifeng Liu, José C. Príncipe, and Simon Haykin,
Kernel Adaptive Filtering: A Comprehensive Introduction,
Wiley, 2010.
- 6
-
Steven Van Vaerenbergh, Ignacio Santamaría, Weifeng Liu, and José C.
Príncipe,
``Fixed-budget kernel recursive least-squares,''
in IEEE International Conference on Acoustics, Speech, and
Signal Processing, Dallas, USA, April 2010.
- 7
-
Steven Van Vaerenbergh, Javier Vía, and Ignacio Santamaría,
``A sliding-window kernel RLS algorithm and its application to
nonlinear channel identification,''
in IEEE Int. Conf. on Acoustics, Speech, and Sig. Proc.,
Toulouse, France, May 2006.
- 8
-
Konstantinos Slavakis and Sergios Theodoridis,
``Sliding window generalized kernel affine projection algorithm using
projection mappings,''
EURASIP Journal on Advances in Signal Processing, vol. 16,
2008.
- 9
-
Weifeng Liu, Il Park, Yiwen Wang, and José C. Príncipe,
``Extended kernel recursive least squares algorithm,''
IEEE Trans. on Sig. Proc., vol. 57, no. 10, pp. 3801 -3814,
Oct. 2009.
- 10
-
Lehel Csató and Manfred Opper,
``Sparse representation for gaussian process models,''
in Advances in neural information processing systems 13, pp.
444-450. MIT Press, 2001.
- 11
-
C. E. Rasmussen and C. K. I. Williams,
Gaussian Processes for Machine Learning,
MIT Press, 2006.
- 12
-
B.J. De Kruif and T.J.A. De Vries,
``Pruning error minimization in least squares support vector
machines,''
IEEE Transactions on Neural Networks, vol. 14, no. 3, pp.
696-702, 2003.
- 13
-
Steven Van Vaerenbergh, J. Vía, and Ignacio Santamaría,
``Nonlinear system identification using a new sliding-window kernel
RLS algorithm,''
Journal of Communications, vol. 2, no. 3, pp. 1-8, May 2007.
Pdf version (275 KB)
Steven Van Vaerenbergh
Last modified: 2011-09-20