next up previous
Up: A Spectral Clustering Approach Previous: Conclusions

Bibliography

1
J. Cardoso,
``Blind signal separation: statistical principles,''
Proc. of the IEEE. Special issue on blind identification and estimation, vol. 9, no. 10, pp. 2009-2025, Oct. 1998.

2
P. Comon, C. Jutten, and J. Herault,
``Blind separation of sources, part II: Problem statement,''
Signal Processing, vol. 24, pp. 11-21, 1991.

3
P. Comon,
``Independent component analysis - a new concept?,''
Signal Processing, vol. 36, pp. 287-314, 1994.

4
A. Hyvärinen, J. Karhunen, and E. Oja,
Independent Component Analysis,
Wiley Interscience, 2001.

5
M. Joho, H. Mathis, and R. Lambert,
``Overdetermined blind source separation: Using more sensors than source signals in a noisy mixture,''
in Proc. 2nd Int. Conf. on Independent Component Analysis and Blind Signal Separation, Helsinki, Finland, June 2000, pp. 81-86.

6
T. W. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski,
``Blind source separation of more sources than mixtures using overcomplete representations,''
IEEE Signal Processing Letters, vol. 6, pp. 87-90, 1999.

7
P. Bofill and M. Zibulevsky,
``Underdetermined blind source separation using sparse representations,''
Signal Processing, vol. 81(11), pp. 2353-2362, 2001.

8
D. Luengo, I. Santamaría, and L. Vielva,
``A general solution to blind inverse problems for sparse input signals: Deconvolution, equalization and source separation,''
Neurocomputing, vol. 69, pp. 198-215, 2005.

9
M. Solazzi, R. Parisi, and A. Uncini,
``Blind source separation in nonlinear mixtures by adaptive spline neural networks,''
in Proc. 3rd Int. Conf. on Independent Component Analysis and Blind Signal Separation, San Diego, California, Dec. 2001, pp. 254-259.

10
Y. Tan and J. Wang,
``Nonlinear blind source separation using higher order statistics and a genetic algorithm.,''
IEEE Trans. Evolutionary Computation, vol. 5, no. 6, pp. 600-612, 2001.

11
M. Babaie-Zadeh, C. Jutten, and K. Nayebi,
``A geometric approach for separating post nonlinear mixtures,''
in Proc. XI European Signal Processing Conference, Toulouse, France, Sept. 2002, vol. II, pp. 11-14.

12
A. Taleb and C. Jutten,
``Source separation in post-nonlinear mixtures,''
IEEE Trans. on Signal Processing, vol. 47, pp. 2807-2820, 1999.

13
F. J. Theis and S. Amari,
``Postnonlinear overcomplete blind source separation using sparse sources.,''
in Proc. 5th Int. Conf. on Independent Component Analysis and Blind Signal Separation, Granada, Spain, Sept. 2004, vol. 3195 of Lecture Notes in Computer Science, pp. 718-725.

14
L. Vielva, I. Santamaría, C. Pantaleón, J. Ibáñez, D. Erdogmus, and J. C. Príncipe,
``Estimation of the mixing matrix for underdetermined blind source separation using spectral techniques,''
in Proc. XI European Signal Processing Conference, Toulouse, France, Sept. 2002, vol. 1, pp. 557-560.

15
D. Erdogmus, L. Vielva, and J. C. Príncipe,
``Nonparametric estimation and tracking of the mixing matrix for underdetermined blind source separation,''
in Proc. 3rd Int. Conf. on Independent Component Analysis and Blind Signal Separation, San Diego, California, Dec. 2001, pp. 189-194.

16
Fabian J. Theis, Elmar W. Lang, and Carlos G. Puntonet,
``A geometric algorithm for overcomplete linear ica,''
Neurocomputing, vol. 56, pp. 381-396, 2004.

17
A. Y. Ng, M. I. Jordan, and Y. Weiss,
``On spectral clustering: Analysis and an algorithm,''
in Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds., Cambridge, MA, 2002, pp. 849-856, MIT Press.

18
L. Zelnik-Manor and P. Perona,
``Self-tuning spectral clustering,''
in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds., Cambridge, MA, 2005, pp. 1601-1608, MIT Press.



Steven Van Vaerenbergh
Last modified: 2006-04-05