Next: Matrix inversion formulas
Up: A Sliding-Window Kernel RLS
Previous: Conclusions
- 1
-
V. N. Vapnik,
The Nature of Statistical Learning Theory,
Springer-Verlag New York, Inc., New York, USA, 1995.
- 2
-
B. Schölkopf, A. J. Smola, and K.-R. Müller,
``Nonlinear component analysis as a kernel eigenvalue problem,''
Neural Computation, vol. 10, no. 5, pp. 1299-1319, 1998.
- 3
-
S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller,
``Fisher discriminant analysis with kernels,''
in Proc. NNSP'99, Y.-H Hu, J. Larsen, E. Wilson, and
S. Douglas, Eds. Jan. 1999, pp. 41-48, IEEE.
- 4
-
F. R. Bach and M. I. Jordan,
``Kernel independent component analysis,''
Journal of Machine Learning Research, vol. 3, pp. 1-48, 2003.
- 5
-
D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor,
``Canonical correlation analysis: An overview with application to
learning methods,''
Technical Report CSD-TR-03-02, Royal Holloway University of London,
2003.
- 6
-
Y. Engel, S. Mannor, and R. Meir,
``The kernel recursive least squares-algorithm,''
IEEE Transactions on Signal Processing, vol. 52, no. 8, Aug.
2004.
- 7
-
B. Schölkopf and A. J. Smola,
Learning with Kernels,
The MIT Press, Cambridge, MA, 2002.
- 8
-
A.H. Sayed,
Fundamentals of Adaptive Filtering,
Wiley, New York, USA, 2003.
- 9
-
G. Kechriotis, E. Zarvas, and E. S. Manolakos,
``Using recurrent neural networks for adaptive communication channel
equalization,''
IEEE Trans. on Neural Networks, vol. 5, pp. 267-278, Mar 1994.
- 10
-
N. P. Sands and J. M. Cioffi,
``Nonlinear channel models for digital magnetic recording,''
IEEE Trans. Magn., vol. 29, pp. 3996-3998, Nov 1993.
- 11
-
D. Erdogmus, D. Rende, J. C. Principe, and T. F. Wong,
``Nonlinear channel equalization using multilayer perceptrons with
information-theoric criterion,''
in Proc. IEEE Workshop on Neural Networks and Signal Processing
XI, Falmouth, MA, Sept 2001, pp. 401-451.
- 12
-
T. Adali and X. Liu,
``Canonical piecewise linear network for nonlinear filtering and its
application to blind equalization,''
Signal Process., vol. 61, no. 2, pp. 145-155, Sept 1997.
- 13
-
P. W. Holland and R. E. Welch,
``Robust regresison using iterative reweighted least squares,''
Commun. Statist. Theory Methods, vol. A. 6, no. 9, pp.
813-827, 1997.
Pdf version (187 KB)
Steven Van Vaerenbergh
Last modified: 2006-03-08