Standard KRLS (with evergrowing dictionary)

Assume a set of ordered input-output pairs $ {\cal D}_t \equiv \{{\boldsymbol{\mathbf{x}}}_i, y_i\}_{i=1}^t$, where $ {\boldsymbol{\mathbf{x}}}_i \in \mathbb{R}^D$ are $ D$-dimensional input vectors and $ y_i\in\mathbb{R}$ are scalar outputs. Data pairs are made available on a one-at-a-time basis, i.e., $ ({\boldsymbol{\mathbf{x}}}_t, y_t)$ is made available at time $ t$. Our objective is to infer the predictive distribution of a new, unseen output $ y_{t+1}$ given the corresponding input $ {\boldsymbol{\mathbf{x}}}_{t+1}$ and data available up to time $ t$, $ {\cal D}_t$.



Subsections

Pdf version (275 KB)
Steven Van Vaerenbergh
Last modified: 2011-09-20