next up previous
Next: Removing the first row Up: Matrix inversion formulas Previous: Matrix inversion formulas


Adding a row and a column

To a given non-singular matrix $ \textbf{A}$ a row and column are added as shown below, resulting in matrix $ \textbf{K}$. The inverse matrix $ \textbf{K}^{-1}$ can then be expressed in terms of the known elements and $ \textbf{A}^{-1}$ as follows:

$\displaystyle \textbf{K} = \begin{bmatrix}\textbf{A} & \textbf{b}\\ \textbf{b}^...
...^{-1} = \begin{bmatrix}\textbf{E} & \textbf{f}\\ \textbf{f}^T & g \end{bmatrix}$    

$\displaystyle \Rightarrow \left\{\begin{array}{lcc}\textbf{A}\textbf{E} + \text...
...{b}g & = & \textbf{0}\\ \textbf{b}^T\textbf{f} + dg & = & 1 \end{array} \right.$    

$\displaystyle \Rightarrow \textbf{K}^{-1} = \begin{bmatrix}\textbf{A}^{-1}(\tex...
...-\textbf{A}^{-1}\textbf{b}g\\ -(\textbf{A}^{-1}\textbf{b})^Tg & g \end{bmatrix}$ (11)

with $ g = (d - \textbf{b}^T\textbf{A}^{-1}\textbf{b})^{-1}$.



Pdf version (187 KB)
Steven Van Vaerenbergh
Last modified: 2006-03-08