next up previous
Up: Matrix inversion formulas Previous: Adding a row and


Removing the first row and column

From a given non-singular matrix $ \textbf{K}$ a row and column are removed as shown below, resulting in matrix $ \textbf{D}$. The inverse matrix $ \textbf{D}^{-1}$ can then easily be expressed in terms of the known elements of $ \textbf{K}^{-1}$ as follows:

$\displaystyle \textbf{K} = \begin{bmatrix}a & \textbf{b}^T\\ \textbf{b} & \text...
...}^{-1} = \begin{bmatrix}e & \textbf{f}^T\\ \textbf{f} & \textbf{G}\end{bmatrix}$    

$\displaystyle \Rightarrow \left\{\begin{array}{lcc} \textbf{b}e + \textbf{D}\te...
...xtbf{b}\textbf{f}^T + \textbf{D}\textbf{G} & = & \textbf{I} \end{array} \right.$    

$\displaystyle \Rightarrow \textbf{D}^{-1} = \textbf{G} - \textbf{f}\textbf{f}^T/e.$ (12)



Pdf version (187 KB)
Steven Van Vaerenbergh
Last modified: 2006-03-08